Skip to content

Posts tagged ‘CRISPR-Cas9’

Secrets of our first seven days

What exactly is gene editing? Why is it important in medical research? Last year, developmental biologist Dr Kathy Niakan got the first ever licence to carry out gene editing in very early human embryos using a new technique called CRISPR-Cas9. She explains all.

Tell us about your research and what you’re trying to find out?

Our lab, at The Francis Crick Institute in London, is really interested in understanding how human embryos develop during the first seven days of development.

We all start off as a fertilised egg, which then divides to form two cells, then four cells, eight cells and so on until it forms a structure called a blastocyst at around day six. At some point around the eight cell stage we think that some of these cells are being set aside. These few cells divide to produce about 20 clumps of cells which go on to become the embryo, while the vast majority of the other cells will be set aside to form the placenta and yolk sac.

What fascinates us is, how does this happen? From this group of cells which all had an equal chance of becoming either an embryo or placenta and yolk sac, how are these cells set aside? They’ve all inherited the same DNA blueprint, it’s just that they are reading that DNA differently. So we want to know what is the key gene that ‘flips the switch’ and decides their fate?

Read more

We must keep using CRISPR-Cas9 technology

Today we released a joint statement with other medical research funders in support of research using gene editing techniques such as CRISPR-Cas9 to advance our understanding of disease in preclinical research and to explore their potential for future therapeutic use. Here our Director of Science Programmes Dr Rob Buckle discusses the huge potential of gene editing, and why any attempt to use it in a therapeutic context must be the subject of the kind of intense and rigorous debate that the scientific community and UK regulatory system has demonstrated in the past.

Wooden blocks with DNA letters on them

(Image: Duncan Hull on Flickr under CC BY 2.0)

 

Being able to edit the human genome is not a new idea or capability. For decades researchers have been developing potential gene therapy techniques to correct missing or faulty DNA and restore healthy gene expression in cells.

More recently, techniques have been developed that can edit the genome in a much more efficient and targeted fashion, and one such example, CRISPR-Cas9, has accelerated the field to such an extent that researchers can now make precise edits to the genome in a relatively easy, speedy, precise and error-free way. Read more